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Kinetic Lattice Models of Disorder 
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We study a class of stochastic lsing (or interacting particle) systems that exhibit 
a spatial distribution of impurities that change with time. It may model, for 
instance, steady nonequilibrium conditions of the kind that may be induced by 
diffusion in some disordered materials. Different assumptions for the degree 
of coupling between the spin and the impurity configurations are considered. 
Two interesting well-defined limits for impurities that behave autonomously are 
(i) the standard (i.e., quenched) bond-diluted, random-field, random-exchange, 
and spin-glass Ising models, and (ii) kinetic variations of these standard cases 
in which conflicting kinetics simulate fast and random diffusion of impurities. 
A generalization of the Mattis model with disorder that describes a crossover 
from the equilibrium case (i) to the nonequilibrium case (ii) and the microscopic 
structure of a generalized heat bath are explicitly worked out as specific realiza- 
tions of our class of models. We sketch a simple classification of transition rates 
for the time evolution of the spin configuration based on the critical behavior 
that is exhibited by the models in case (ii). The latter are shown to have an 
exact solution for any lattice dimension for some special choice of rates. 

KEY WORDS: Stochastic lsing systems; interacting particle systems; steady 
nonequilibrium states; disordered systems; spin glasses; conflicting kinetics; time 
relaxation; heat bath. 

1. INTRODUCTION,  A N D  DEFINITION OF BASIC MODEL 

The present understanding of cooperative phenomena in nature relies 
significantly on the success of the Ising model to capture essential physics 
in complex systems. Many pure systems have been modeled as a (e.g.) 
simple-cubic d-dimensional lattice whose sites are occupied by spin (1/2) 
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variables whose configurations, s -= {sx = -t-1; x ~ Z d }, have potential energy 
given by 

n ( s ) =  - y ,  yx.,,s~sy-~ h.~sx (1.1) 
I x  - y l  = I x 

where the first sum is over all pairs of nearest-neighbor (NN) sites. A heat 
bath at temperature T is involved by setting up either a canonical ensemble 
(e.g., ref. 1) or else a kinetic evolution consisting of stochastic changes of 
s. C2-51 Several conceptually simple variations of this case have been devised 
to study impure systems (e.g., refs. 6-14). The Edwards-Anderson model, tl~ 
where J_~.v is a random variable distributed around zero, is based on (1.1) 
(with h x = 0  for any x). The spatial competition between positive and 
negative couplings may prevent all the exchange interactions in (1.1) being 
simultaneously locally minimized. Such a frustration induces uncommon 
macroscopic behavior that is believed to be shared, at least in part, by a 
class of materials known as spin glasses. ~8"H-13~ Frustration has a different 
origin in the so-called random field model, c~4~ where only the local field h~ 
in (1.1) varies randomly with x. 

We identify the latter (and similar) systems as models of quenched 
disorder (MQD) from now on. Their conceptual simplicity is deceptive. New 
concepts and techniques arising in the study of MQD have increased our 
understanding of many phenomena, but some problems remain. Exact, and 
even approximate relevant results remain scarce, the comparison between 
the behavior of models and real materials is not quite satisfactory, and 
some controversy on basic issues persists. ~s.lH6) Further study is advised; 
in particular, it seems desirable to consider modifications to fit some cases 
in nature better. Concerning spin glasses, for example, the MQD neglect 
ion diffusion. Diffusion constantly modifies the distance between each 
specific pair of magnetically active ions in natural substances. Conse- 
quently, one should probably allow for variations in a model both in space 
and time of J~.,,. The same argument may be applied to other cases of 
disorder, e.g., random fields. We remark that such diffusion has a too 
simple, unrealistic representation within the annealed version of (e.g.) the 
Edwards-Anderson model, tm That is, the time variation of the spatial 
distribution of J's is then constrained by the need to reach equilibrium at 
temperature T with the other (spin) degrees of freedom. Therefore, impuri- 
ties tend to be strongly correlated, e.g., located at interfaces, which is not 
observed in general. Instead, one may imagine that both the spin confi- 
guration s and the spatial distribution of impurities (i.e., of the s e t s  {Jxy}, 
{hx}, o r  {Jxy, h~}, depending on the situation of interest) vary with time 
in such a way that the latter behave rather independently of s, e.g., 
completely at random. A steady nonequilibrium condition may then occur 
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asymptotically. We recall that some observations in substances with dis- 
order are consistent with the existence of nonequilibrium effects, e.g., a 
peculiar time dependence, and a strong influence of the details of the 
process on the steady state have been reported. (~2'~5"~6) 

This situation and a general concern for steady nonequilibrium states 
have motivated us to study stochastic Ising systems with dynamical 
disorder. A precise relation exists between the MQD and the new models, 
but, unlike the former, different versions of the latter either have an exact 
solution or are amenable to simple, e.g., mean-field and Monte Carlo 
treatments. They allow us to evaluate the influence of diffusion of disorder 
on thermodynamics, which happens to be interesting. Moreover, different 
limiting conditions for the new models represent a variety of impure 
situations besides the familiar MQD, including nonequilibrium magnetic 
systems with competing kinetics (~s-22) and neural networks. ~23~ Our models 
are defined as follows. 

Consider the Ising model with spin configuration s; S={s} .  Let 
~=  { ~  R} be a set of degrees of freedom not included in s, e.g., {J~.,}, 
{hx}, etc. The probability of a given whole configuration (s, ~) at time t, say 
P,(s, ~), satisfies the master equation 

c3e,(s, ;)lOt = (L~ + FLr e,(s, ;) (1.2) 

where 

L~g(s, ~)= ~ [c(s"---, sl~) g(s ~, ~)-c(s-- ,sXl~) g(s, ~)] 
s ~ S  

(1.3) 

and 

Lcg(s,~)= ~ [w(q-,~ls) g(s,q)-w(~--,qls)g(s,~)] (1.4) 
r lEH 

Here, g stands for an arbitrary function, H---{II}, and Ls is the Glauber 
operator t2) that describes stochastic flips s . ~ - s ~ .  Thus, Ls generates 
from s a new configuration (denoted sX), and c(s ~ sXl ~) is the associated 
transition probability per unit time (rate) when the set ~ is given. Lc induces 
stochastic changes of ~ with rate w(~ ---, q Is) when the spin configuration is 
s. Furthermore, (1.2) presumes that the processes governed by L, and Lr 
have a priori frequencies F~ and F~, respectively, and we have defined 
r = rE~r , .  

For simplicity, the elementary rates c(s--, s~l~) in (1.3) satisfy detailed 
balance, i.e., 

c(s~sX[~)=c(sX ~s l~)expE-B,6Hc] ,  JH~=-H~(sX)--H~(s) (1.5) 
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where f l= (kBT) -~, with respect to a class of Hamiltonians H d s  ) that we 
shall take to be of the NN Ising type (1.1). A simple choice is 

c(s ~ sXl~) = ~b(]~ AHr (1.6) 

where ~b(X) is a positive function which is arbitrary except that ~b(0)= 1, 
and ~b(X)--}0 as X--}oo, and ~ ) ( X ) = e - X f b ( - X )  to have (1.5). ~b(X)= 
1 -  tanh(�89 min(1, e-X) ,  and e -x/2 have been used to implement several 
stochastic Ising systems (see, e.g., ref. 20, and references therein). Our 
system (1.1)-(1.5) reduces to the familiar Glauber-Ising system m with 
(Gibbs) equilibrium states as long as F = 0 and 

= {J.~y = J =  const, h.~ = h = const } 

For F# :0  and ~=  {J~v, hx} differing from the latter choice, the system 
allows one to consider several interesting situations that are nonequilibrium 
in general. 

We define two particular cases: 

(i) The time evolution of ~ is independent of the time evolution of s, 
i.e., 

w ( ~ T I I S ) = W ( ~ - ~ T I )  for any s (1.7) 

as if the changes of ~ were caused by some external, independent agent. 

(ii) Some dependence between the processes (1.3) and (1.4) exists. 

The latter may describe, for example, a system whose impurities (i.e., ~) are 
canonically driven by a heat bath at inverse temperature, say fl', that differs 
from the one for spin changes, ft. In a sense, this generalizes the case of the 
annealed system; the explicit analysis of such a specific situation is beyond 
the scope of the present paper, and it will be reported elsewhere. 

The present paper deals with case (i), i.e., we assume that (1.7) holds 
hereafter. It allows us to describe in Section 2 a changeover from the MQD 
to a class of models with kinetic disorder (MKD) that have been studied 
before. (t8-22) More precisely, we find that F ~  0 corresponds to the (equi- 
librium) MQD, while F ~  ~ leads to the (nonequilibrium) MKD; two 
time scales that characterize the evolution with time of the impurity and 
spin configurations, respectively, are well differentiated from each other 
within the latter limit. Therefore, (1.1)-(1.7) help to elucidate the physical 
significance of the nonequilibrium situations studied before, and further 
questions such as the role of diffusion of impurities in deciding thermo- 
dynamics. Furthermore, we find novel interesting cases that are sometimes 
amenable to simple analytical treatment. On the other hand, certain 
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situations included in our models may be interpreted as a class of neural 
networks as reported before, cz3~ To illustrate the formalism, we work out in 
Section 3 the explicit relation between two one-dimensional systems: a 
quenched spin-glass model by Mattis, ~24~ on the one hand, and a version 
of MKD that may be interpreted as a nonequilibrium spin-glass model, c~8~ 
i.e., a system in which a dynamical conflict between positive and negative 
couplings exists, on the other. The analysis of such a relation clarifies also, 
in particular, some aspects of time relaxation in the one-dimensional 
quenched spin-glass Ising model. It is remarkable that the MKD may 
exhibit an exceptionally rich class of nonequilibrium phase transitions and 
critical phenomena. That is, for example, various versions of the model 
(1.1)-(t.7) undergo within the limit F - - + ~  first- and/or second-order 
phase transitions that have no equilibrium counterpart, and the whole 
resulting picture is strongly influenced by kinetics, e.g., the latter may 
induce nonuniversal critical behavior. We describe some results for such a 
limit in Section 4; the focus there is on the classification of the elementary 
rates that we believe is a main problem in this field at present. We thus find 
a special class of rates for which the MKD can be solved exactly for any 
lattice dimension d. Finally, as a further illustration of the formalism in 
Section 2, we consider a microscopic realization of the concept of a heat 
bath in Section 5. That is, a version of our model system is explicitly shown 
to have the properties one should require for a heat bath system. 

2. A U T O N O M O U S  DISORDER 

The solution of the master equation (1.2) may be written as 

P,(s, ~) =/7,(s I ~) p,(;) (2.1) 

where Z, ~ P,(s, ~) = I and Z,//,(sl~) = I. Assuming (1.7), it follows by 
substitution that 

dp,(~)/~t =/"Lr p,(~) (2.2) 

OH,(sl~)/St = LsH,(sl~) + Fp,(~)- ~ [LcH,(sI~)-  H,(sl~) Lr p,(~) (2.3) 

Equation (2.2) says that the distribution of disorder at each time, p,(~), 
depends only on ~he initial condition Po(~) and on the intrinsic mechanism 
Lr when (1.7) holds; (2.3) indicates that s evolves coupled to p,(~), in 
general. The coupling strength depends on the value of the parameter F 
that appears in (2.2) and (2.3). The study of several degrees of coupling 
follows. 

822/74/3-4-14 
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Consider first the simple limiting case F =  0; then, (2.2) implies that 

P,(~)-- Po(~) for any t (2.4) 

and the equation that governs the conditional probability simply reduces 
to 

Oll,(sl~)/Ot = L:H,(s  I ~) (2.5) 

That is, the initial distribution of disorder, Po(~), remains quenched or 
frozen-in with time for F = 0, and the time evolution of s is then governed 
by (2.5), which is the familiar Glauber equation. ~2) This situation is the one 
that characterizes the familiar MQD. That is, the standard bond-dilute, 
random-field, and spin-glass Ising models may be interpreted as realiza- 
tions of our model (1.1)-(1.7) when both F = 0  and the last function in 
(2.1) is independent of t as follows: 

P , ( ; ) =  H [qr(J_,c, , )+(1 -q )6 (J , : y -Jo ) ]  
Ix - y l  = 1 

P,(;) = H { q6(h,.) + �89 - q ) [ 6 ( h x  - ho) + 5(h,< + ho) ]  } 
x 

Pt(;)  = I-I [16(j.,y-Jo)+�89 
I x -  y l  = 1 

respectively. This finding is discussed in more detail in Sections 3 and 4. 
Next, we define a new time scale, z = It, that remains finite within the 

limit F--* 0, t--* ~ .  Then, Eq. (2.2) transforms into 

@,(;)l& = L~ p,(~), 

On the other hand, one expects 

LsD,(sl~)--+ 0 as F ~ 0 ,  

P~(~) = Pr-'~(~) (2.6) 

D~(sl~) = Hr-,~(sl ~) (2.7) 

on the time scale z because of (2.3). Equation (2.7) implies that 

DAsI~)= Hs,(sl~) for any z > 0  (2.8) 

which corresponds to the solution of (2.5). Thus, the general solution of 
(1.2) as F ~ 0  is 

~ ( s ,  ~) -Pr- ,~(s ,  ~) -- H~,(s I ~)/~(~) (2.9) 

where the last function is the solution of (2.6). We remark that the validity 
of (2.7) and, more generally, of the simplified description (2.9) rests upon 
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the existence for F ~ 0 of well-defined time scales that are characterized by 
time variables t and z, respectively. More precisely, (2.7) requires that 
maxr ts(~)'~ F -~, where 6(~) is the relaxation time associated to (2.5). 

A similar discussion applies to the opposite case, i.e., to the limit 
F ~  ~ ,  t ~ 0 ,  namely, the solution of (1.2) may be written also as 

P,(s, g) = n;(~ I s)/~,(s) (2.10) 

where Z~-H',(sl g)= 1, and one gets by substitution if condition (1.7) holds 
that 

81a,(s)/Ot = ~ L~.H',(~ I s)/a,(s) (2.11) 

and 

Ol-I',(~ls)/Ot-~ I~Lr + u,(s) -1 F LsH',(~Is)-H',(~Is) ~. Ls] I~,(s) 

(2.12) 

If we introduce the (finite) time scale r -= It ,  the latter two equations may 
be written (using notation similar to the one before) 

0/~(s)/Oz = F - '  ~ Ls/7"(~ls)/~,(s) (2.13) 

OB'~(~ls)/Or = LcD'~(~ I s) + F-'/~T(s) - l  [L,B',(~ I s) 

- / 7 ; ( ~ l s )  ~ Ls]/7~(s) (2.14) 

respectively. Thus, 

0~(s)/Ox = 0, OB'~(~ls)/Or = LcB'A~ I s) (2.15) 

within the limit F ~ 0% t ~ 0. The latter two equations imply, respectively, 

/~T(s)=/~o(S) forany r, /I ' ,(~ls)=P~(~) (2.16) 

The latter equality is a consequence of the fact that the operator Lr is inde- 
pendent of s [cf..Eqs. (1.4) and (1.7)] and of the assumed uniqueness of the 
solution of the master equation (2.6). Consequently, (2.10) transforms into 

P~(s, ~) =/~(g)/~o(S) (2.17) 

when F--* ~ (for small enough values of t). 
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Finally, we consider the case F, ~ ~ ~ for finite values of t = r F -  1. 
We get 

H',(~ I s) = Ps,(~), Ola,(s)/Ot=~.. ps,(~) Ld~,(s) (2.18) 

Namely, during the interval elapsed between two consecutive spin-flip 
processes, the other degrees of freedom will, in general, undergo enough 
changes when F, z--* ~ to assure that p,(~) has reached the steady value 
p~,(~). One needs to assume here also that L~ is such that p,,(~) is unique 
and may be reached from almost any initial condition on an interval that 
is small enough compared to the characteristic time associated to the 
evolution of the spin configuration. 

Summing up, the system (1.1)--(1.6) has two interesting cases as long 
as (1.7) holds: (a) For F--*0, spins remain frozen-in while impurities 
evolve according (2.6) within the scale z = Ft for large enough values of t. 
Within the original time scale t the limiting case F =  0 corresponds to the 
familiar MQD characterized by (2.4) and (2.5). (b) For F--* or, one may 
distinguish, in general, two well-separated time scales in the system evolu- 
tion. On the one hand, a microscopic time scale r exists in which the spins 
remain essentially frozen-in, while impurities evolve according to (2.1 5). On 
the other hand, a macroscopic time scale t exists in which impurities have 
already reached their stationary state, p.,(~). According to (2.18), the spin 
system evolves within the latter time scale as implied by an effective 
Glauber operator, namely 

L~rr=- ~ p~,(;) Ls (2.19) 

This is the Glauber propagator L~ averaged with respect to the stationary 
solution of (2.12) as F ~  c~. Sections 4 and 5 contain several realizations 
of case (b); Section 3 is devoted to a model with varying F in which a 
changeover between cases (a) and (b) is observed explicitly. 

3. THE MATTIS  SPIN-GLASS MODEL 

Mattis (24) introduced an equilibrium disordered system characterized 
by the Hamiltonian 

He(s) = - ~  JxsxSx+~, Jx=Jo~x~x+, (3.1) 
X 

for d =  1; here, J0 is a constant and ~.~= +1, s x=  +1. The disorder is 
represented here by the random variables G ,  distributed spatially between 
sites according to 

P(~x)  = �89 - 1 ) + �89 + 1 ) 
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The one-dimensional case (3.1) corresponds to the Edwards-Anderson 
(quenched) spin-glass model "~ (but no correspondence occurs for d >  1). 
Thus, this is an interesting case that may be generalized to obtain a 
convenient explicit (one-dimensional) realization of our model. With this 
aim, we adopt the description (1.2)-(1.7) and define transition rates for the 
time evolution of the spin and disorder variables, respectively, as follows: 

c(s-*s~l~)=l-tanh[flJos.~(.~(Sx+i(x+~+s~_t~x_t)] (3.2) 

and 

w(~--* ~x I s) = const for any ~,s (3.3) 

The latter is the simplest representation of assumption (1.7). With (1.4), 
(3.3) states that the set ~ changes by flipping, i.e., (x ~ - ( x ,  completely at 
random, say, as driven by a heat bath at infinite temperature. On the other 
hand, we remark that (3.2) reduces the system to a simple case. In fact, the 
resulting state (s, 4) will be shown to be Bernoulli within the limit F---, oo 
for (3.2), and the system does not exhibit a zero-T critical point. The latter 
two (easy) features are not present in most of the one-dimensional MKD, 
e.g., each of the MKD in Section 4 corresponds to a more involved expres- 
sion for c(s ~ sXl~). Our choice (3.2) is motivated by the fact that it makes 
the (generalized) kinetic system easily solvable while it still allows for some 
interesting behavior. For example, it makes the sets s and g correlated to 
each other (though no correlations exist within each of them) for any finite 
F (:~0); one recovers the original Mattis model (where correlations exist 
within both s and 4) for F =  0. 

To prove the latter and further facts, let us introduce the variables 
Crx-(xS x. Then, one may write after Eqs. (1.2)-(1.4) and (3.3) that 

Here, 

OP,(e, ;)/Ot = ~ {?(ox ~ . )  p,(. . . ,  4) +/- 'P,(aL ;x) 
o-x~ x 

-- [ 3 ( .  ~ . x )  + / -'] e , ( e ,  ~)} (3.4) 

t?(~ --* ~'~) = 1 -- �89 1 + trx-i  ) (3.5) 

where y = tanh(2flJo), because of (3.2). One may write from (3.4) that 

O(g)t/Ot = ~. { ( [g(~X, 4 ) -  g(~, 4)] ?(~ --* ttx)), 
~x 

+ F(g(aX, ;x)_ g(~, 4)),} (3.6) 
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where 

(g(~, 4 ) ) t = ~  ~ g(~, 4) p,(~r, 4) 
a 

Then, it follows from (3.6) for g(a, 4) = ~.~ that 

( ( x ) ,  = (( : , )o  e x p ( - 2 F t )  

(3.7) 

(3.8) 

which indicates an exponential relaxation to a stationary distribution of 
disorder with ( ( x ) , ,  = 0  for F >  0. Some information concerning the time 
evolution of the spin configuration follows from (3.6) for g( , ,  4 ) = ( o a x ;  
one obtains 

OF,(x)/Ot = 4F[h~,oF,(0) - F,(x)] - 2F,(x) + y[F,(x + 1) + F,(x - 1 )] 

(3.9) 

where F , ( x ) = ( ( o a ~ ) ,  and &x.y is the Kronecker delta. After Fourier 
transforming, we obtain 

F,(0)  = ( S o ) , = e  -2tt +2r),~, Fo(x)Iixl(2?t) 
x 

+ 4F ~s d~ F, _ ~(0) e-2~t + 2r~lo(2yr) (3.10) 

in particular, where I,,(X) stands for the Bessel function. 
Next, we remark that the differential equation (3.9) and the (Volterra) 

integral equation (3.10) reduce to the solution of the original Mattis model 
with quenched disorder as F--* 0. For instance, one obtains 

( S o ) ,  = e -2' ~ (Sx)o(o(xIixl(2yt) (3.11) 
x 

if the initial condition Fo(x)=~o(.,.(Sx)o is used (which corresponds to 
having all the bonds fixed at t = 0). To deal with more general conditions, 
one may note that a solution (So),  of Eq. (3.10) always exists which is 
unique and may be represented by a convergent series (e.g., ref. 25); such 
a solution may be obtained from the Laplace transform of (3.10), 

f ( z )  = d t e - ' ~ F , ( O ) = ( O - 4 F )  -~ ~. Fo(x)[2y/(a+O)3 bxl 
x 

where ct - z + 2 + 4F and 0 = (ct 2 - 4 y 2 )  1/2. 

(3.12) 
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Information concerning several interesting cases follows from (3.12). 
Consider first the infinite-temperature limit, which corresponds to y ~ 0. 
One gets from (3.12) that 

f ( z ) =  ( z + 2 )  - I  ~ Fo(x) (3.13) 
X 

which is independent of F. It implies 

(So)t = (So)o e x p ( - 2 / )  (3.14) 

i.e., the spin system relaxes at infinite temperature, independent of the other 
degrees of freedom, with a characteristic time given by rs = 1/2, while the 
relaxation time for the disorder is % = ( 2 F )  -~, according to (3.8). For 
small enough values of y, one may develop (3.12) to write, after inverse 
Laplace transforming, that 

(So),  e 2' = Fo(0) + ) , (4F) - '  (1 - e)[Fo(1) + Fo( - 1)] 

_ ~2(4F)-2 [e(l + 4Ft) - 1 ] [/'0(2) + Fo( - 2)] 

+ 2y2(4F)-2 (4F t -  1 + ~)/70(0 ) + O(), 3) (3.15) 

where e = e x p ( - 4 F t ) .  The exponential e -2 '  that multiplies the RHS here is 
effectively modulated by powers of t if t < �89 = (4F)-1,  and the relaxation 
becomes then independent of F; i.e., 

(So)t ~ e-2t { Fo(0 ) + 7t [Fo(1 ) + Fo( -- 1)] 

+�89 (3.16) 

The latter behavior, which extends to any value of the time as F--*0, 
corresponds to the peculiar relaxation that is known to characterize the 
standard spin-glass model. Only for t > �89 where % ~ 0 as F ~  oo, is the 
system relaxation influenced, and even dominated, by the evolution of 
the bond distribution. Also noticeable is the fact that the system relaxation 
is determined anyhow by functions /70 that describe initial correlations 
between the bond and spin configurations. 

The case F--* oo may be studied by developing (3.12) for small F-~ ;  
one obtains 

(So)t e2' = (So)o (1 + 2~2tF - l) + 7(4F) - 1 [F0( 1 ) + Fo( -- 1 )] + O(F -2) 

(3.17) 

That is, the bonds evolve as driven by a heat bath at infinite temperature, 
which is already a consequence of (3.3). The nonequilibrium spin-glass 
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model I~s~ (cf. Sect ion4)  is only recovered from the above generalized 
Mattis model when one considers the limit F ~  oo besides condition (3.3), 
however. This specific finding illustrates the main general result in 
Section2. That  is, the M K D  studied in refs. 18-22 involve (implicitly) 
essentially different time scales for the time changes in s and { in addition 
to a lack of correlations between impurities. 

It appears worthwhile to study also the nature of the stationary 
correlations in the generalized model (1.2)-(1.4) with (3.2) and (3.3). Let us 
consider 

(trx, ax2(y,(y2), = G(xl, x2; Yl, Y2) (3.18) 

where the average is defined in (3.7). It follows from (3.4) after some 
algebra that 

4{~5.,.l,X2- r [ 2 -  O(x,, x2, y, ,  )'2)-I - 1 } G(x,, x2; y , ,  Y2) 

+) , (1--2tSx,x2)[G(xl ,  x 2 +  1; Yl, y2)+G(x~, x 2 -  I; Yl, Y2)] 

+~[G(x~+l, x2;yl ,  y 2 ) + G ( x l - l ,  x2;y~,y2)]=O (3.19) 

Here, 

D(xl, x2, Y l, Y2) = cSx,.x2 + 6.~, e2 + fix2, y2 + CSYt, 3'2 + 6x~. y~( 1 -- 2tS.vt. y2) 

~x2. yl( 1 -- 2~x2. Y2) -- 2tSxl. x2(l~-v2, Yl --t- I~x2.3'2 -- 2~x2. yl ~x2, y2) 
(3.20) 

and the condition (a.~a.~,,{y) = 1 has been used. For  F =  0, (3.19) reduces 
to 

G(xl, x2; Yl, Y2) = ~y, (y2 qlxl - xzl (3.21) 

where r /= tanh(f l J ) ,  which is precisely the behavior of correlations in the 
Mattis case. 

Otherwise, one may study the correlations numerically using (3.19). 
We have studied G(x~, x2; y~, Y2) by performing up to 10 3 iterations on a 
204 hypercube with boundary conditions fixed to G = 0. The Mattis equi- 
librium correlations have been used as initial conditions. The accuracy of 
the method was tested by comparing the numerical estimate for F = 0  
with the exact solution (3.21); the only systematic deviations occur for 
Ix~-x21 > 9  (moreover,  one finds that the correlation length is always 
smaller than 6). We have concluded in this way that 

G(xl, x2 ; xl , x2) = (sx~sx2) = 6 x, x2 (3.22) 
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and 

G(x, x; x l ,  x 2 ) =  (~x,~x2) = 5x,.x2 (3.23) 

according to our comment  above that (3.2) makes  the system exceptionally 
simple].  The correlations between the sets s and ~, as measured by 

G ( n ) = G ( x l , x z ;  y, Y)=(s.~,s.~2(x,(x2), n=lxl-x21 (3.24) 

are nontrivial,  however. This is illustrated by Figs. 1-3. The figures reveals 
the following facts: 

1. G(n) decreases from the Mattis  value with increasing F for any 
given n > 0  (cf. Fig. 1; see also inset for Fig. 3). This agrees with our  
expectat ion that  the sets s and ~ should become essentially uncorrelated 
(except at very short  distances) for the nonequil ibrium case, i.e., within the 
limit F ~  oo, for the simple choice (3.2). 

2. G(n) increases with decreasing temperature  for any n > 0  (cf. 
Fig. 2), as one should expect to be the case in general. 

3. G(n) decays exponentially with n for any value of F and T (cf. 
insets for Figs. 1 and 2). In fact, G(n)~O for n > 5  independent of F 
(cf. Fig. 1 ), except at very low temperatures  (cf. Fig. 2). 

0.5 0 
X 

J 

-6 

X 

~-,,  
~'~.~ ~ ,  

- . ' a .  " ' x  

10 
n 

0 ' ' ~ ~ Q ~ ~ ' ~  

0 5 10 

Fig. 1. The correlation function G(n) =- G(x 1, x2; y, Y) (cf. Eq. (3.24)) for the generalized 
Mattis model in Section 3 as a function of n =-Ix,-x2] for a given temperature, T= 2, and 
different values of F; namely, F=0  (circles), 0.01 (squares), 0.1 (crosses), 0.4 (triangles), and 
0.6 (asterisks). The inset is a semilogarithmic plot of the same data. 
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Fig. 2. 
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The same as in Fig. 1, but for F = 0 . 1 ,  and T = 0 . 2  (crosses), 1 (triangles), 1.5 
(squares), and 2 (circles). 

4. The correlation length 4, as defined by 

G(n) ~ exp( - n/~) for large n (3.25) 

is practically constant for T < 0 . 6  (when F=0 .1 ) ,  while it otherwise 
decreases with T (cf. Fig. 3). This is consistent with the fact that the case 
F # 0  does not have a zero-T critical point [for the choice (3.2)]. 
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Fig. 3. The correlation length ~, defined as the slope of the fits to the data in the inset for 
Figs. 1 and 2 (times In 10), when F = 0 . 1  as a function of T (main graph), and as a function 
of F for T =  2 (inset). 
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4. T H E  L I M I T  I'--~ oo 

This section deals with the model (1.1)-(1.7) within the limit F--* ~ .  
It follows from Section 2 that, on the appropriate time scale, this is 
equivalent to the MKD. That is, such a limit may be defined also as an 
Ising system in which the probability of s at time t, #,(s), satisfies 

c3/a,(s)/dt= ~ [C'(Sr----I.S)~Lt(SX)--C'(S----~sX)~.Lt(S) "] (4.1) 
sXES 

where the rate defines a competing process. Namely, s changes stochasti- 
cally with probability c'(s ~ s x) per unit time as due to the simultaneous 
action of independent spin-flip mechanisms: 

f -t- oo 
c ' ( s  ~ s")  = ( ( c ( s  --, sX I ; )  >> -= d(p(;)c(s~sXl;) 

- c o  
(4.2) 

The systems defined by Eqs. (4.1) and (4.2), which are to be complemented 
with (1.5), (1.6), and (1.1), correspond to MQD that have been studied in 
refs. 18-22. The case (4.1)-(4.2) reduces to the Glauber-Ising t2) model for 
p(~) = c5((-(0),  where Go is a constant and 6 is the Dirac delta function. 
Otherwise, a conflict between different values of ~ (e.g., J's) occurs that 
leads asymptotically to a steady nonequilibrium state in general, as if a 
non-Hamiltonian agent is acting on the spin system. Consequently, the 
resulting steady state depends on details of kinetics, e.g., H~(s), p((), and 
~(X) besides T. 

Two different interpretations of (4.1)-(4.2) are possible: 

1. The disorder variable (e.g., J or h) changes at each kinetic step so 
that it takes the same value chosen at random from distribution p(()  
throughout the system. This suggests how to implement the MKD some- 
times in the laboratory. For example, a magnetic system under a very 
rapidly fluctuating magnetic field may correspond to the MKD with 
p(( )= p(h). With this aim one needs to vary randomly the applied field 
according to p(h). Alternatively, one may produce regular variations of 
the field but with a period that is shorter than the mean time between 
successive transitions that modify the spin configuration. (21) 

2. The fact that the involved spin-flip process has a local nature and 
the restriction to .NN interactions in (1.1) allow for a different interpreta- 
tion of (4.1)-(4.2). One may assume that only the disorder variables that 
directly concern the spin(s) involved by each transition s ~ s x (e.g., the 2D 
bonds Jxr, I x -  Y[ = 1, ending at s~, or the local field hx) change at random 
successively during time evolution. As demonstrated in Section 2, this 



678 Garrido and Marro 

produces asymptotically a spatial distribution of disorder, say p'(~), which 
has two interesting properties: 

(i) Within the appropriate time scale, p'(~) is similar at each time to 
the (quenched) random spatial distribution in the MQD. 

(ii) Unlike the latter case, however, the disorder variable at each spa- 
tial location is not constant with time, but continuously changes at random 
according to the distribution p(~) in (4.2). This variation represents very 
fast and random diffusion of disorder that one may consider in turn as a 
simple representation of the sort of diffusion of disorder that occurs in 
natural substances due to atomic migration. 

One may prove thermodynamics is the same for these two inter- 
pretations except energy fluctuations that are anomalously large for 
interpretation 1. ~2~ It reflects that the two cases correspond to different 
physical situations, but differences are more conceptual than practical, at 
least for (1.1). In particular, both cases have the same Monte Carlo 
implementation.t26 

The systematic study of the MKD t 18-22j by several methods has revealed 
a rich class of steady states, phase transitions, and critical phenomena, 
as mentioned above. We discuss some known results for several specific 
realizations of the MKD in the remainder of this section. Our goal is not 
only completeness, i.e., to report on the interesting behavior of the general 
system in Section 1 within the limit F---, ~ ,  but we attempt a general classi- 
fication of elementary transition rates which we believe is an important 
issue here at the present moment. Moreover, the important result then 
follows that, for a given class of rates, the MKD have a simple representa- 
tion that may be solved exactly in some cases for any d-dimensional lattice, 
even for more general choices of Hamiltonians than (1.1). This is a rare 
case; it stresses the essential role played by the rate in determining the most 
important features of the steady state. 

The simplest case of MKD occurs when the effective rate (4.2) satisfies 
global detailed balance. Namely, for 

c'(s ~ s x) exp[ - E(s)] = c'(s x ~ s) exp[ - E(sX)] (4.3) 

where E(s) is defined such that 

/~,,(s) = e x p [ -  E(s)] {s~% e x p [ -  E(s)] } -1 (4.4) 

where /~s,(s) represents the stationary solution of (4.1). Since (4.3) holds, 
which restricts in practice the choices for p(~) and ~(X), the following 
result tzT'zS~ applies: 
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The steady states for any one-dimensional MKD which is defined by 
Eqs. (4.1), (4.2), (1.5), and (1.6), where any of the functions He(s) that 
are involved by the latter has the NN Ising structure (1.1), may be 
characterized by an effective Hamiltonian E(s) that has the short-range 
structure of (1.1). 

More explicitly, one has (only) under these conditions that 

E(s )=  - K  e ~ sxs , , -  flhe ~ sx (4.5) 
Ix - yl = 1 x 

where 

Ke=~ In [- ((~b( - 4 K -  2h))) ((~b( - 2h))) ] 
L j 

with K= flJ, and 

f l he=  �89 (( ( ~ ( -  2h ) ) ) /  ((  ~ (2h  ) )) ] 

(4.6) 

The symmetry (4.3) does not hold in one dimension for most choices of 
p(~) and ~b(X). t28~ It seems reasonable to expect that the system has a more 
interesting, say full nonequilibrium behavior in the absence of such a sim- 
plifying symmetry. 2 Thus, it is remarkable that the behavior of a system 
which has a canonical structure (4.5) is relatively complex, as suggested 
below. Formally, this is a consequence of the fact that the effective 
parameters (4.6) and (4.7) that describe the effect of conflicting kinetics 
involve in practice a complex dependence on (e.g.) temperature. A descrip- 
tion of the most interesting behavior found for this quasicanonical class 
follows. Eventually, we refer also to some cases that lack property (4.5) as 
described by kinetic mean-field theory "9'22~ and Monte Carlo simula- 
tions.~26'29) 

An interesting case of MKD is the nonequilibrium spin-glass system. ~ ~s~ 
It occurs (e.g.) if Hr has the structure in (I.1) with h x = h = 0 ,  and 
Jxy = J (which corresponds to ~) is a random variable whose distribution 
p(J)=p(~)  allows for a competition between ferromagnetic and 
antiferromagnetic bonds. It is convenient, and apparently of some physical 
relevance, to distinguish two classes of rates, i.e., of functions ~b in (1.6) as 
follows: 

2 It may occur that such a full nonequilibrium case can be characterized by a short-ranged 
effective Hamiltonian as well. In that case, E(s) would only satisfy a condition that is weaker 
than (4.3). One may attempt to find an expression for E(s) in this case by making a 
perturbative expansion either around the equilibrium case or around the state with 
symmetry (4.3), but this is beyond the scope of the present paper. 

(4.7) 
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Hard dynamics.  The rate is such that ~ ( - X )  goes to a positive 
constant as X--,oo, as for the familiar cases 4 ( X ) = l - t a n h ( � 8 9  and 
~b(X) = min(1, e-X) .  

So f t  dynarnics. The rate has the factorization property ~b({2=})= 
/-1~=(2~), where each factor satisfies the detailed balance (1.5), i,e., 
~(2=)=exp(-2=)~b~(2~). As long as one has (I.1) in (1.6), so that the 
argument of ~b is Z~ 2=s~, it follows that 

~b ( ~  2~s~)= II~I ~ ~b~(2~) exp(�89 exp ( -  �89 ~ 2~G) (4.8) 

Due to factorization, the probability of flipping any spin is the superposi- 
tion of independent processes, one for each bond ending at the spin. That 
is, some correlations are suppressed within the dynamical process. There- 
fore, the resulting behavior is particularly simple in some cases (but the 
present problem is an exception), e.g., (4.5) may hold even for d >  1, which 
justifies the name given to this class. The familiar rates ~b(X)= e -x/2 and 
(~(X)=e-X/Z[cosh(K)]-2a  belong to this class. One also has the property 
that ~k( - X)  ~ e "x, where n < 1, for X ~ ~ .  

Consider the one-dimensional case for 

p ( J ) = ( l + # )  -~ [ l~6 (J - - JL )+6(J - - J2 )  ], J , > 0  J 2 < 0  (4.9) 

where/~-= [J21/Jl E [0, cX3 ] ,  which is a relatively general distribution of zero 
mean. One obtains (4.5) with he=0,  and Ke depending on the rate. (~s) 
Within the limit T ~  0, it follows for hard rates that Ke ~ �88 In/~; it indicates 
that the zero-T critical point that characterizes the pure system is washed 
out for/~ g: 0 by dynamical disorder which makes the system very hot even 
at low temperatures. On the contrary, for soft rates one gets that 
Ke ~ n(1 -- #) J1/kB T +  �88 In/~. Therefore, critical behavior exists as T--* 0 
for soft rates which may be characterized by exponents v = 2 ( 1 - # )  rt and 
c t=2(1- /~)n ,  for example. That is, exponents depend not only on n, 
which describes the rate asymptotically, but also on/~, which refers to the 
symmetry of the disorder distribution (alternatively, one may describe the 
system by pure exponents if one allows for a variable characterizing the dis- 
tance to the critical point, which is system dependent). It is worthwhile to 
emphasize that p = 1, which makes the exponents vanish, corresponds to 
the highest symmetry of (4.9), while a continuum of impure values for the 
exponents occurs otherwise in one dimension. The case d >  1 has been 
studied in detail by a kinetic mean-field method (~9) that suggests a very rich 
phase diagram. On the other hand, a preliminary Monte Carlo study (26) for 
hard rates, p(J)  = q O ( J -  Jo) + (1 - q) r + Jo), and d = 2 and 3 reveals the 
existence of a ferromagnetic-like phase for q >/q0 (qo ~ 0.928 for d =  2 and 
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qo~0.835 for d =  3) and of an antiferromagnetic-like phase for q~< 1 - q o .  
The corresponding critical exponents cannot be distinguished in practice 
from the Ising ones, except very near qo, where some systematic deviations 
are observed. A sort of order with zero magnetization has been detected 
also between the two phases at low temperature, e.g., for q=0.91 and 
T <  0.6 when d =  2. Moreover, the system exhibits the onset of percolation- 
like phenomena at T =  0 for q = qo that seems characterized for d =  2 and 
3 by Ising critical exponents, t29~ 

The nonequilibrium dilute magnetic system is a (slightly) varying case 
of the previous system when distribution p ( ( ) =  p(J) in (4.2) allows for 
competition between 0 and J o > O , p ( J ) = q r ( J - J o ) + ( 1 - q ) 6 ( J ) .  ~2~ 
Again, hard rates preclude the existence of a zero-T critical point, which is 
similar to the situation for equilibrium where the one-dimensional Ising 
model loses the critical point for any nonzero concentration of non- 
magnetic impurities. One may argue as follows: For the indicated bond dis- 
tribution, disorder ( J =  0) and order ( J =  Jo) occur on time scales which are 
proportional to ( 1 -  q)-~ and [q(~(flJo)]- ~, respectively. Thus, condition 
q4(flJo)>>l-q guaranties stability of the critical point, which is not 
satisfied for hard rates where time scales are comparable. On the other 
hand, the system presents a percolation-like critical point for T =  0, as for 
the nonequilibrium spin-glass model above. The situation is also similar to 
the one in the nonequilibrium spin-glass model when soft rates are used 
instead: the familiar critical point remains under dynamical disorder [in 
fact, condition q(~(~Jo)>> 1 - q  holds], and both thermal and percolation 
exponents may be defined that depend on details of kinetics. Further inter- 
esting cases have been analyzed elsewhere, t2~ 

The nonequilibrium random field system~21~ is defined by setting Jxy = J 
and hx = h in (1.1), and interpreting J as a constant and h - ~ as a random 
variable. The ensuing macroscopic behavior differs essentially from the one 
for the models above due to the mathematical peculiarities induced by the 
presence of a field here. In particular, the one-dimensional case exhibits a 
critical point if one of the following situations arises: 

(a) One has he = 0 as a consequence of the specific realization for 
p(h) and ~(X), and Ke diverges as T-* 0 § This occurs when p(h)= p ( - h )  
for the soft rate ~(X)= e x/2, for example. The resulting critical behavior is 
the same as for the pure Ising model, i.e., a zero-T critical point exists, 
unlike for the one-dimensional quenched random field Ising model. 
Furthermore, a fluctuation-dissipation relation does not hold, due to the 
existence of some added fluctuations. 

(b) Both he-* oo and Ke-* ~ as T - * 0  § which has no equilibrium 
counterpart. It has been shown to occur only for soft rates, which imply 
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he :/: 0 in general. In particular, the choice q~(X)= 1 - tanh( �89  induces two 
kinds of novel interesting critical behavior for p(h)=�89 
�89 - [ /~ -  x]):  namely, one has fir' = 1 - x/J (while fir '  = 1 for the pure 
system) as /~---, 0, and a line of critical points, which are characterized by 
v=min[l,(K-II)/J], as long as /~<x; here, 6' represents the critical 
isotherm exponent. 

(c) Ke has a more complex dependence on T, and none of the 
above cases occur. For example, hard rates and p(h)=�89 
�89 may lead to Ke~K ~ as T - , 0  +, where K ~ is 
either a positive constant (the disorder avoids any critical behavior), or a 
negative constant (the field competition induces an effective antiferro- 
magnetic situation), or it is infinite (corresponds to a zero-T critical point), 
depending on the model version. 

The (kinetic) mean-field study of this is interesting/221 For d >  1, a 
zeroth-order approximation reveals that the hard rate ~(X) = 1 - tanh(�89 
produces a tricritical point that separates second- from first-order phase 
transitions, while the transitions are always of first order for ~(X)-- 
min(1, e-X), which is also hard. The phase diagram in the former case is 
consistent with a mean-field computation of the partition function for the 
quenched system by Aharony t3~ within the same order of approximation. 
The study of hard rates within a first-order mean-field description reveals 
the existence of a tricritical point for d >  2 only, while the phase, transition 
is always of second order for d~< 2; the study of the quenched random-field 
Ising model within the same order of approximation t31,321 reveals a 
behavior qualitatively similar, except for some details, e.g., the quenched 
system has a tricritical point even for d =  2. 

Summing up, the dynamical conflict in MKD caused by the superposi- 
tion between several canonical spin-flip mechanisms may induce interesting 
novel behavior that deserves further investigation, specially for d >  1. In 
addition to this F-~ ~ limit, it would be interesting to study cases with 
finite F. It is already clear, however, that the symmetries within the 
effective rate (4.2) (which involves both the elementary rate with a given 
Hamiltonian function and the distribution and nature of the disorder 
variable) are here as conclusive for macroscopic behavior, at least, as the 
spatial symmetries that are familiar from equilibrium theory. It was 
shown t33~ that the ordinary Ising fixed point is locally stable with respect 
to small amounts of irreversibility for systems with short-ranged interac- 
tions which respect the symmetry of the lattice and exhibit symmetry under 
spin inversion. This is consistent with the occurrence of different univer- 
sality classes for full nonequilibrium systems, however. It corresponds to 
the existence of other stable fixed points with a domain of attraction 
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different from that of the Ising model, which is not excluded by the 
perturbative renormalization group argument in ref. 33. In fact, it seems 
that such a possibility may also be worked out exactly for d >  1 for a soft 
rate such as (4.8). ~ 

5. M ICROSCOPIC  STRUCTURE OF A HEAT BATH 

Finally, we work out in this section a further realization of our general 
system in Section 1. 

From a macroscopic point of view, a heat bath is characterized by the 
inverse temperature parameter ft. Within the context of kinetic lattice 
models, a heat bath which is coupled to the spin configuration of energy 
Ho(s) induces stochastic changes of s as implied, for instance, by the 
Glauber operator Ls in (1.3), which involves a transition rate c(s--, sX). In 
order to guarantee that the latter leads asymptotically from almost any 
initial condition to a Gibbs state,/~s,(s) oc exp[--f lHo(s)] ,  it is sufficient to 
require detailed balance, i.e., 

c(s ~ sX)=f(s;  x){ 1 - t anh [ f l (Ho( sX) -Ho(s ) ) ]}  (5.1) 

where f(sX; x ) = f ( s ;  x); cf. (1.5). Further details concerning the heat bath 
are irrelevant. Consequently, the set of variables or phonon system that 
characterizes the bath microscopic state, to be denoted q or ~ hereafter, 
may be assumed to evolve in an appropriate, microscopic time scale by 
some sort of stochastic process, e.g., as stated by (1.4). In principle, one has 
no criteria to specify the associated transition rate w(q--* ~ls). A case of 
our model in Sections 1 and 2 may be devised, however, that corresponds 
to a proper realization of a heat bath. Such a possibility and some 
interesting consequences of it are analyzed in the present section. 

Consider the system (1.2)-(1.4) with transition rates c(s ~ sXl~) and 
w(~--* rlls ) whose specific form is unknown a priori. It has been shown in 
Section 2 that two different time scales may be defined naturally within the 
limit F ~  oo. Hence, we may interpret that the microscopic state of the heat 
bath or phonon configuration evolves toward its stationary state on a 
microscopic time scale, while the spin configuration is driven on a macro- 
scopic time scale by an effective stochastic process. The latter is expected to 
be characterized by a transition rate, say cen-(s ~ sX), which depends on 
the (microscopic)'stationary state of the bath, as stated in Eq. (2.19). 
Consistent with this, let us assume (for the sake of simplicity only) that: 

(a) Within the limit F - - * ~ ,  one has i~,,(s)ocexp[--flHo(s) ], and 
condition (5.1) holds for the effective rate cefr(s ~ sX). 

822/74/3-4-15 
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(b) The time evolution of q occurs independently from that of the 
spin configuration on the microscopic time scale, i.e., (1.7) holds. 

(c) Only the transitions s ---* s x that decrease the global energy of the 
system, say H(s, rl), are allowed for a given microscopic state q and, 
consequently, for a given energy of the bath. 

Under conditions (a)-(c), the nature of the heat bath or, more 
precisely, the unknowns c(s--*sXLq) and w ( ~ q l s ) ,  may be specified. 
Conditions (b) and (c) are convenient in order to determine a specific 
family of transition rates out of infinitely many having the right limiting 
property (a). 

The global Hamiltonian for the spin system coupled to the bath may 
be written as 

H(s, q) = H0(s) + Hi(s, n) + nz(n)  (5.2) 

where H 2 represents the energy of the phonons, and H~ is the energy 
associated with the interaction between the spin and phonon systems. For 
simplicity, one may take 

H,(s, q)= --�89 ~ sx (5.3) 
X 

where the bath state is characterized for simplicity by a single variable r/, 
and 2 characterizes the coupling between the spin and phonon systems. 
Consistently with condition (c), we propose 

c(s ~ s"l n )=L(s ,  n ) { 1 -  sgn[H(sX, q ) -  H(s, q)] } (5.4) 

for the rate governing the evolution of the spin system given !1; here, 
sgn(X)= 1 for X~>0 and sgn(X)= - 1  for X<0 .  On the other hand, we 
assume that, if isolated, i.e., H~ = 0, the steady-state distribution of the bath 
is ps,(TI) oc e x p { - H d r l )  }, and the associated dynamics may be obtained 
from the detailed balance condition: 

w(~ --* n) P,,(~) = w(n --+ 4) ps,(n) (5.5) 

Thus, one needs to determine both Hz(TI) and f~(s, 11) to characterize 
completely the two dynamical processes (5.5) and (5.4), respectively. Then 
the condition (a) that cerr(s-+ s x) needs to satisfy (5.1) for F--+ oo leads to 
a relation between H 2 and f~(s, 11): namely, one obtains that 

f~(s, q ) = f ( s ;  x)[ps,(n)e"(1 + e - " )  2] -~ (5.6) 
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where 

f 
o o  

f(s ,  x ) =  dq ps,(q) f~(s, q) (5.7) 
- - c o  

Therefore, the type of thermal bath, i.e., Ps,(q) or H2, determines the 
microscopic mechanisms. In particular, if one chooses 

( Pst(ll) = 2 cosh (5.8) 

it follows that 

c ( s ~ s X l q ) = f ( s ; x ) ( 1 - - s g n { 2 [ H o ( s ~ ) - - H o ( s ) ] + r l s x } )  (5.9) 

and 

w(r /~  ~) = ~['2 ln(cosh �89 �89 (5.10) 

where ~' (X)  = ~ ( - X )  e - x  

Summing up, if the basic equations (1.2)--(1.4) are complemented with 
(5.9) and (5.10), the resulting model corresponds precisely to the usual 
concept of a bath as long as F ~  oo. Thus, finite values of F correspond 
in a sense to a generalization of that concept in which the two involved 
time scales may be comparable. Such a generalization may have some 
interesting applications, but this is not investigated here. 
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